Fluctuating enzymes: lessons from single-molecule studies.
نویسندگان
چکیده
Recent single-molecule enzymology measurements with improved statistics have demonstrated that a single enzyme molecule exhibits large temporal fluctuations of the turnover rate constant at a broad range of time scales (from 1 ms to 100 s). The rate constant fluctuations, termed as dynamic disorder, are associated with fluctuations of the protein conformations observed on the same time scales. We discuss the unique information extractable from these experiments and the reconciliation of these observations with ensemble-averaged Michaelis-Menten equation. A theoretical model based on the generalized Langevin equation (GLE) treatment of Kramers' barrier crossing problem for chemical reactions accounts naturally for the observation of dynamic disorder and highly dispersed kinetics.
منابع مشابه
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying re...
متن کاملComplex kinetics of fluctuating enzymes: phase diagram characterization of a minimal kinetic scheme.
Enzyme molecules are dynamic entities with stochastic fluctuation in both protein conformation and enzymatic activity. However, such a notion of fluctuating enzymes, best characterized by recent single-molecule experiments, was not considered in the classic Michaelis-Menten (MM) kinetic scheme. Here we incorporate the fluctuation concept into the reversible MM scheme, and solve analytically all...
متن کاملExploration of the spontaneous fluctuating activity of single enzyme molecules.
Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activity, such as transcription, replication, translation, and histone modifications. Here we introduc...
متن کاملTwisting and subunit rotation in single F(O)(F1)-ATP synthase.
F(O)F(1)-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecul...
متن کاملWhen does the Michaelis-Menten equation hold for fluctuating enzymes?
Enzymes are dynamic entities: both their conformation and catalytic activity fluctuate over time. When such fluctuations are relatively fast, it is not surprising that the classical Michaelis-Menten (MM) relationship between the steady-state enzymatic velocity and the substrate concentration still holds. However, recent single-molecule experiments have shown that this is the case even for an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accounts of chemical research
دوره 38 12 شماره
صفحات -
تاریخ انتشار 2005